40 research outputs found

    Modeling of Kidney Hemodynamics: Probability-Based Topology of an Arterial Network

    Get PDF
    Through regulation of the extracellular fluid volume, the kidneys provide important long-term regulation of blood pressure. At the level of the individual functional unit (the nephron), pressure and flow control involves two different mechanisms that both produce oscillations. The nephrons are arranged in a complex branching structure that delivers blood to each nephron and, at the same time, provides a basis for an interaction between adjacent nephrons. The functional consequences of this interaction are not understood, and at present it is not possible to address this question experimentally. We provide experimental data and a new modeling approach to clarify this problem. To resolve details of microvascular structure, we collected 3D data from more than 150 afferent arterioles in an optically cleared rat kidney. Using these results together with published micro-computed tomography (ÎŒCT) data we develop an algorithm for generating the renal arterial network. We then introduce a mathematical model describing blood flow dynamics and nephron to nephron interaction in the network. The model includes an implementation of electrical signal propagation along a vascular wall. Simulation results show that the renal arterial architecture plays an important role in maintaining adequate pressure levels and the self-sustained dynamics of nephrons

    Fluorescent angiography of chicken embryo and photobleaching velocimetry

    Get PDF
    Fluorescent angiography approach in application to a living chicken embryo is discussed. It provides precise vessel wall detection and demonstrates usefulness for real time monitoring of vasoconstriction and vasodilatation related to self regulation of vascular network as well as to response to external factors. On the other hand, high stability of fluorescence and long period of dye elimination makes variations of fluorescent intensity practically independent from fast variations of blood flow rate. Therefore, we proposed the improvement of fluorescent angiography technique by introduction of photobleaching fluorescent velocimetry approach. We have developed the imaging system for intravital microscopic photobleaching velocimetry and tested it by using a glass capillary tube as a model of blood vessel. We demonstrated high potential of the technique for instant flow velocity distribution profile measurement with high spatial and temporal resolution up to 2 ÎŒm and 60 ms, respectively

    Lyapunov analysis of the spatially discrete-continuous system dynamics

    Get PDF
    The spatially discrete-continuous dynamical systems, that are composed of a spatially extended medium coupled with a set of lumped elements, are frequently met in different fields, ranging from electronics to multicellular structures in living systems. Due to the natural heterogeneity of such systems, the calculation of Lyapunov exponents for them appears to be a challenging task, since the conventional techniques in this case often become unreliable and inaccurate. The paper suggests an effective approach to calculate Lyapunov exponents for discrete-continuous dynamical systems, which we test in stability analysis of two representative models from different fields. Namely, we consider a mathematical model of a 1D transferred electron device coupled with a lumped resonant circuit, and a phenomenological neuronal model of spreading depolarization, which involves 2D diffusive medium. We demonstrate that the method proposed is able reliably recognize regular, chaotic and hyperchaotic dynamics in the systems under study

    Sodium–Calcium Exchanger Can Account for Regenerative Ca2+ Entry in Thin Astrocyte Processes

    Get PDF
    Calcium transients in thin astrocytic processes can be important in synaptic plasticity, but their mechanism is not completely understood. Clearance of synaptic glutamate leads to increase in astrocytic sodium. This can electrochemically favor the reverse mode of the Na/Ca-exchanger (NCX) and allow calcium into the cell, accounting for activity-dependent calcium transients in perisynaptic astrocytic processes. However, cytosolic sodium and calcium are also allosteric regulators of the NCX, thus adding kinetic constraints on the NCX-mediated fluxes and providing for complexity of the system dynamics. Our modeling indicates that the calcium-dependent activation and also calcium-dependent escape from the sodium-mediated inactive state of the NCX in astrocytes can form a positive feedback loop and lead to regenerative calcium influx. This can result in sodium-dependent amplification of calcium transients from nearby locations or other membrane mechanisms. Prolonged conditions of elevated sodium, for example in ischemia, can also lead to bistability in cytosolic calcium levels, where a delayed transition to the high-calcium state can be triggered by a short calcium transient. These theoretical predictions call for a dedicated experimental estimation of the kinetic parameters of the astrocytic Na/Ca-exchanger

    Discovery and modelling of a flattening of the positive cyclotron line/luminosity relation in GX 304−1 with RXTE

    Get PDF
    The Rossi X-ray Timing Explorer (RXTE) observed four outbursts of the accreting X-ray binary transient source, GX 304−1 in 2010 and 2011. We present results of detailed 3–100 keV spectral analysis of 69 separate observations, and report a positive correlation between cyclotron line parameters, as well as other spectral parameters, with power-law flux. The cyclotron line energy, width and depth versus flux, and thus luminosity, correlations show a flattening of the relationships with increasing luminosity, which are well described by quasi-spherical or disc accretion that yield the surface magnetic field to be ∌5 × 10^(12) Gauss. Since HEXTE (High Energy X-ray Timing Experiment) cluster A was fixed aligned with the Proportional Counter Array field of view and cluster B was fixed viewing a background region 1°.5 off of the source direction during these observations near the end of the RXTE mission, the cluster A background was estimated from cluster B events using HEXTEBACKEST. This made possible the detection of the ∌55 keV cyclotron line and an accurate measurement of the continuum. Correlations of all spectral parameters with the primary 2–10 keV power-law flux reveal it to be the primary driver of the spectral shape. The accretion is found to be in the collisionless shock braking regime

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 1

    Get PDF

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)
    corecore